skip to main content


Search for: All records

Creators/Authors contains: "Toepfer, Christopher N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rationale: Dominant heterozygous variants in filamin C ( FLNC ) cause diverse cardiomyopathies, although the underlying molecular mechanisms remain poorly understood. Objective: We aimed to define the molecular mechanisms by which FLNC variants altered human cardiomyocyte gene and protein expression, sarcomere structure, and contractile performance. Methods and Results: Using CRISPR/Cas9, we introduced FLNC variants into human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs). We compared isogenic hiPSC-CMs with normal (wild-type), ablated expression ( FLNC −/− ), or haploinsufficiency ( FLNC +/− ) that causes dilated cardiomyopathy. We also studied a heterozygous in-frame deletion ( FLNC +/Δ7aa ) which did not affect FLNC expression but caused aggregate formation, similar to FLNC variants associated with hypertrophic cardiomyopathy. FLNC −/− hiPSC-CMs demonstrated profound sarcomere misassembly and reduced contractility. Although sarcomere formation and function were unaffected in FLNC +/ − and FLNC +/Δ7aa hiPSC-CMs, these heterozygous variants caused increases in lysosome content, enhancement of autophagic flux, and accumulation of FLNC-binding partners and Z-disc proteins. Conclusions: FLNC expression is required for sarcomere organization and physiological function. Variants that produce misfolded FLNC proteins cause the accumulation of FLNC and FLNC-binding partners which leads to increased lysosome expression and activation of autophagic pathways. Surprisingly, similar pathways were activated in FLNC haploinsufficient hiPSC-CMs, likely initiated by the loss of stoichiometric FLNC protein interactions and impaired turnover of proteins at the Z-disc. These results indicate that both FLNC haploinsufficient variants and variants that produce misfolded FLNC protein cause disease by similar proteotoxic mechanisms and indicate the therapeutic potential for augmenting protein degradative pathways to treat a wide range of FLNC -related cardiomyopathies. 
    more » « less
  2. Rationale: Calcium transient analysis is central to understanding inherited and acquired cardiac physiology and disease. Although the development of novel calcium reporters enables assays of CRISPR/Cas-9 genome-edited induced pluripotent stem cell–derived cardiomyocytes and primary adult cardiomyocytes, existing calcium-detection technologies are often proprietary and require specialist equipment, whereas open-source workflows necessitate considerable user expertise and manual input. Objective: We aimed to develop an easy to use open-source, adaptable, and automated analysis pipeline for measuring cellular calcium transients, from image stack to data output, inclusive of cellular identification, background subtraction, photobleaching correction, calcium transient averaging, calcium transient fitting, data collation, and aberrant behavior recognition. Methods and Results: We developed CalTrack, a MatLab-based algorithm, to monitor fluorescent calcium transients in living cardiomyocytes, including isolated single cells or those contained in 3-dimensional tissues or organoids, and to analyze data acquired using photomultiplier tubes or employing line scans. CalTrack uses masks to segment cells allowing multiple cardiomyocyte transients to be measured from a single field of view. After automatically correcting for photobleaching, CalTrack averages and fits a string of transients and provides parameters that measure time to peak, time of decay, tau, peak fluorescence/baseline fluorescence (F max /F 0 ), and others. We demonstrate the utility of CalTrack in primary and induced pluripotent stem cell–derived cell lines in response to pharmacological compounds and in phenotyping cells carrying hypertrophic cardiomyopathy variants. Conclusions: CalTrack, an open-source tool that runs on a local computer, provides automated high-throughput analysis of calcium transients in response to development, genetic or pharmacological manipulations, and pathological conditions. We expect that CalTrack analyses will accelerate insights into physiological and abnormal calcium homeostasis that influence diverse aspects of cardiomyocyte biology. 
    more » « less
  3. Damaging GATA6 variants cause cardiac outflow tract defects, sometimes with pancreatic and diaphragmic malformations. To define molecular mechanisms for these diverse developmental defects, we studied transcriptional and epigenetic responses to GATA6 loss of function (LoF) and missense variants during cardiomyocyte differentiation of isogenic human induced pluripotent stem cells. We show that GATA6 is a pioneer factor in cardiac development, regulating SMYD1 that activates HAND2, and KDR that with HAND2 orchestrates outflow tract formation. LoF variants perturbed cardiac genes and also endoderm lineage genes that direct PDX1 expression and pancreatic development. Remarkably, an exon 4 GATA6 missense variant, highly associated with extra-cardiac malformations, caused ectopic pioneer activities, profoundly diminishing GATA4 , FOXA1/2, and PDX1 expression and increasing normal retinoic acid signaling that promotes diaphragm development. These aberrant epigenetic and transcriptional signatures illuminate the molecular mechanisms for cardiovascular malformations, pancreas and diaphragm dysgenesis that arise in patients with distinct GATA6 variants. 
    more » « less
  4. null (Ed.)
    Background: Hypertrophic cardiomyopathy (HCM) is caused by pathogenic variants in sarcomere protein genes that evoke hypercontractility, poor relaxation, and increased energy consumption by the heart and increased patient risks for arrhythmias and heart failure. Recent studies show that pathogenic missense variants in myosin, the molecular motor of the sarcomere, are clustered in residues that participate in dynamic conformational states of sarcomere proteins. We hypothesized that these conformations are essential to adapt contractile output for energy conservation and that pathophysiology of HCM results from destabilization of these conformations. Methods: We assayed myosin ATP binding to define the proportion of myosins in the super relaxed state (SRX) conformation or the disordered relaxed state (DRX) conformation in healthy rodent and human hearts, at baseline and in response to reduced hemodynamic demands of hibernation or pathogenic HCM variants. To determine the relationships between myosin conformations, sarcomere function, and cell biology, we assessed contractility, relaxation, and cardiomyocyte morphology and metabolism, with and without an allosteric modulator of myosin ATPase activity. We then tested whether the positions of myosin variants of unknown clinical significance that were identified in patients with HCM, predicted functional consequences and associations with heart failure and arrhythmias. Results: Myosins undergo physiological shifts between the SRX conformation that maximizes energy conservation and the DRX conformation that enables cross-bridge formation with greater ATP consumption. Systemic hemodynamic requirements, pharmacological modulators of myosin, and pathogenic myosin missense mutations influenced the proportions of these conformations. Hibernation increased the proportion of myosins in the SRX conformation, whereas pathogenic variants destabilized these and increased the proportion of myosins in the DRX conformation, which enhanced cardiomyocyte contractility, but impaired relaxation and evoked hypertrophic remodeling with increased energetic stress. Using structural locations to stratify variants of unknown clinical significance, we showed that the variants that destabilized myosin conformations were associated with higher rates of heart failure and arrhythmias in patients with HCM. Conclusions: Myosin conformations establish work-energy equipoise that is essential for life-long cellular homeostasis and heart function. Destabilization of myosin energy-conserving states promotes contractile abnormalities, morphological and metabolic remodeling, and adverse clinical outcomes in patients with HCM. Therapeutic restabilization corrects cellular contractile and metabolic phenotypes and may limit these adverse clinical outcomes in patients with HCM. 
    more » « less
  5. The mechanisms by which truncating mutations in MYBPC3 (encoding cardiac myosin-binding protein C; cMyBPC) or myosin missense mutations cause hypercontractility and poor relaxation in hypertrophic cardiomyopathy (HCM) are incompletely understood. Using genetic and biochemical approaches, we explored how depletion of cMyBPC altered sarcomere function. We demonstrated that stepwise loss of cMyBPC resulted in reciprocal augmentation of myosin contractility. Direct attenuation of myosin function, via a damaging missense variant (F764L) that causes dilated cardiomyopathy (DCM), normalized the increased contractility from cMyBPC depletion. Depletion of cMyBPC also altered dynamic myosin conformations during relaxation, enhancing the myosin state that enables ATP hydrolysis and thin filament interactions while reducing the super relaxed conformation associated with energy conservation. MYK-461, a pharmacologic inhibitor of myosin ATPase, rescued relaxation deficits and restored normal contractility in mouse and human cardiomyocytes with MYBPC3 mutations. These data define dosage-dependent effects of cMyBPC on myosin that occur across the cardiac cycle as the pathophysiologic mechanisms by which MYBPC3 truncations cause HCM. Therapeutic strategies to attenuate cMyBPC activity may rescue depressed cardiac contractility in patients with DCM, whereas inhibiting myosin by MYK-461 should benefit the substantial proportion of patients with HCM with MYBPC3 mutations. 
    more » « less